Robust C Library and Utility for GPIO sysfs Interface in Linux

Thisis a comprehensive and easy to read example C code designed to work alone or included as a library for dealing with general purpose I/O via the sysfs interface in Linux. It can easily be applied to any computer which utilizes the GPIO sysfs interface (both pro and maker boards). Getting started is a breeze. You just need to decide if you’re going to use it as a library, including it into your existing code, or as a stand-alone utility. We’ll talk about both in this article, but first and foremost, here’s the source code we’ll be working with:

https://github.com/embeddedts/gpio-sysfs-demo

Continue reading “Robust C Library and Utility for GPIO sysfs Interface in Linux”

IoT, Here We Come! Ubuntu Core Announced for TS-4900

In a joint press release between partners Canonical and Technologic Systems, the pairing of Ubuntu Core and TS-4900wasofficially announced.

We couldn’t be more excited!

We feel that Ubuntu Core is going to make a big splash inthe IoT world for its security, ease of management, and flexibility. Combine that with our rock-solid, industrial TS-4900 and you have yourself a reliable, production-ready IoT device.

We’re very honored to be featured in the Ubuntu booth at the Mobile World Congress in 2017. For more information, please take a look at the press release, Bringing Ubuntu Core to the i.MX6 Based TS-4900. If that isn’t enough to quench your thirst, take a look at our Ubuntu Core Powered Embedded Systems page.

How To Compile the Mainline Linux Kernel v4.9 for TS-4900

embedded-linux-ts-board

Here’s a quick how-to guide straight from one of our engineers on how to compile the mainline Linux Kernel v4.9-rc1 and install it on the TS-4900. Support for the TS-4900 in the mainline kernel image (v4.9 and up) is a pretty big deal for us, and we’re excited about it. A big shout out to our friends at Savoir-faire Linux for their hard work in making this happen!

Step 1: Install the Toolchain

We need to install the toolchain from Ubuntu or Debian Jessie by running the following command:              Home

apt-get install gcc-arm-linux-gnueabihf build-essential lzop u-boot-tools libncursesw5-dev -y

Continue reading “How To Compile the Mainline Linux Kernel v4.9 for TS-4900”

Building a Yocto Image for NXP i.MX6 Products

yocto-project-thumbdrive

Things to Know

We’re going to be walking through how to prepare a Yocto build for use with our i.MX6 products, specifically the TS-4900 which we have a special build recipe for. A build recipe is a friendly term to describe the scripts and environment variables required to build a Yocto distribution. There are many other build recipes available which work on a more generic level as well, so this guide can be applied generally as well. This guide is both an echo and extension of the TS-4900 Build Yocto Distribution wiki page. I’ll be mostly echoing (aka copy/pasting) the steps, but I’ll also add a few notes along the way. I’m going to assume you’ve landed here because you’re using search terms that make you at least familiar with what Yocto is and the terminology that surrounds a basic software development environment. If you have questions, I’m happy to try and answer them in the comments that follow.

Continue reading “Building a Yocto Image for NXP i.MX6 Products”

Reading CPU Temperature and Controlling LED with C++ via sysfs

thermometer

Let’s take a quick look at an example C++ program which reads CPU temperature and controls an LED using sysfs. This example is a bit specific in that it’s only been tested on our NXP i.MX6 powered TS-4900 or TS-7970 running Yocto Linux, but the principles could be applied to other embedded systems as well. If you’re interested in the nitty gritty details about sysfs, take a look at The sysfs Filesystem by Patrick Mochel. Suffice it to say for our purposes, sysfs makes it easy for us to interact with system hardware using plain text files located in the /sys/ directory. The file to control the red LED is /sys/class/leds/red-led/brightness. The file to read the CPU temperature is /sys/class/thermal/thermal_zone0/temp. If we want to turn the red LED on, we simply write a ‘1’ to the file, and not surprisingly, writing a ‘0’ will turn it off. If you’ve booted up your TS-4900 or TS-7970, you can see this by running the shell commands:    Home

Continue reading “Reading CPU Temperature and Controlling LED with C++ via sysfs”